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ABSTRACT

Six artificial neural network models are explored as poten-

tial methodologies for the automated interpretation of satellite

cloud images. The Multi-layer Perceptron Network is chosen to be

the most applicable to the image interpretation problem. A

complete, mathematical description of the methodology is present-

ed. The neural network's classification capability is demon-

strated using simple, geometric patterns and alphabetic charac-

ters. A more complex test using GOES infrared imagery shows that

the neural network can distinguish 53 of 54 large-scale cloud

patterns. An architecture for a complete, automated cloud fea-

ture recognition system is proposed.
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NEURAL NETWORK METHODOLOGIES AND THEIR POTENTIAL

APPLICATION TO CLOUD PATTERN RECOGNITION

1. Introduction

Artificial neural network models or "neural nets" have been

studied for many years as potential methods for solving speech

and image recognition problems. These models are composed of

many nonlinear computational elements operating in parallel in

networks. Artificial neural net structure is based on present

understanding of biological nervous systems.

The neural network approach has many advantages. The paral-

lel structure of such networks provides very high computation

rates. Neural nets typically provide a greater degree of robust-

ness than sequential methods because they have many more process-

ing units. Thus, poor or missing input data to a few units does

not significantly impair the overall performance of the network.

Another advantage is that the connection weights can be adapted

during use of the algorithm, so that performance is continually

improved based on current results. In the interpretation of

image features such as clouds, the training sample can never

contain examples of every possible feature configuration. Neural

networks can continue to adapt as new examples are encountered.

Neural net classifiers are nonparametric and make weaker assump-

tions about the shapes of underlying distributions than tradi-

tional statistical classifiers. It is for this reason that

neural nets work well when distributions are non-Gaussian.

The automatic interpretation of satellite images would be a

powerful aid to Navy forecasters. A necessary step in the inter-

pretation process is to identify the cloud features that are
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comprised of collections of contiguous and noncontiguous cloudy

pixels. To accomplish this goal using standard pattern recogni-

tion techniques would require enormous amounts of processing

resources and would likely have only limited success. In this

paper, neural nets are presented as a possible alternative way to

acquire the necessary processing capacity using networks of

simple processing elements operating in parallel.

In the next section, six different neural network configura-

tions that accomplish classification are presented. It will be

shown that the multi-level perceptron configuration is most

applicable to the satellite image feature recognition problem.

In Section 3, the mathematical form of the multi-level perceptron

network will be presented. An implementation of the algorithm,

called "NOARL-NEURAL," has been developed. The program has been

tested on simple problems, the results of which are in Section 4.

Based on the results of these tests, an architecture is proposed

for a comprehensive cloud image analysis system that uses neural

network, expert system and statistical methodologies in concert.

Finally, the conclusions of this preliminary research will be

presented.

2. Types of Neural Networks

There are many different types of neural net models. The

various models are designed to accomplish different goals. For

example, some are designed to provide a parallel content-address-

able memory storage capacity. Similar networks can be used to

supply missing information for incomplete input sets. Con-
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straint-satisfaction neural networks find solutions to problems

with a large number of constraints. These networks are very

useful for problems in which there is no solution that matches

all of the constraints. In such cases, the solution satisfies as

many constraints as possible. It may be possible to use such a

methodology to satisfy the constraints of multi-channel atmos-

pheric profiling from satellite radiance data. Similarly, the

solution of a numerical model's cumulus or boundary-layer parame-

trization could be solved by using embedded neural networks in

the model. Pattern-associators are another powerful type of

neural network, in which learning from examples is accomplished.

Similar to pattern associators are the so-called auto-associators

which detect regularity in a set of input patterns and can re-

store distorted or incomplete input patterns to their original

form. Such networks have been used to filter noise from signals

or to make generalizations about examples -- a sort of automatic

rule generation. Finally, biological neural researchers have

used neural methods to simulate human cognitive processes in an

attempt to understand human perception.

In this section, six neural models that accomplish pattern

classification will be examined with the goal of choosing the

best one to apply to the satellite image problem. The different

models can be specified by the network topology, node character-

istics, and training or learning rules. The network topology

specifies how the various artificial neurons, or "nodes," are

distributed and interconnected. The node characteristics define
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how each node processes the signals it receives from other nodes,

and what signal it outputs. The learning rules define how the

weights are adjusted if the desired output is not attained.

The simplest artificial neuron or node sums N weighted

inputs and passes the result through a nonlinear function as

shown in Figure 1. The node is characterized by an internal

threshold or offset e and by the type of nonlinearity. Three

such nonlinearities, shown in Figure 1, are the hard-limiter,

threshold logic and sigmoid functions. Very complex neural

models may include a time dependency and a more complex mathemat-

ical operation than summation. In an image classifier, the

inputs might be the gray scale level of each pixel and the output

classes might represent different objects.

X0

INPUT Y (4 Nj -e

XNA

f, ) (, (o)
1 .1

HARD UMITER THRESHOLD LOGIC SIGMOID

Figure 1. Artificial neuron which forms a weighted sum of N
inputs and passes the result through a nonlinear function. Three
types of nonlinearities are shown.
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In an excellent survey of neural networks, Lippman (1987).

summarized six neural network classifiers. A taxonomy of these

methodologies is presented in Figure 2. The six net types are

first divided into those that use binary versus continuous input

data values. Next, the nets are divided between those trained

with or without supervision. Supervised training occurs when the

correct output patterns are specified for each training case. In

unsupervised training, the network itself groups the training set

outputs, thus defining the output classes. The classical statis-

tical algorithms listed at the bottom of Figure 2 are those most

similar to the corresponding neural net in methodology or func-

tion. The six methodologies will now be examined with the goal

of choosing the one most applicable to the satellite image inter-

pretation problem.

NEUPAL NET CLASSIFIERS FOR FIXED PATTERNS

BINARY INPUT CONTINUOUS-VAWIO INPUT

SUPERVISEO UNSUPERVISEO SUPERVISED UNSUPERVISED

4O4PELD AMING CAPIATIR/ PERCEPMON MULTI-LAYIER KOHOlEN

METSIR NEA0081111 PERCSEPTRON SELF-ORGANIZING

o$u CI. As Pi $ FEAURI MAPS
Op"iU LEADE GAUSSIAN -NES K-MS

CLASSIFIER CLUSTERING CLASIIFIER NEIGH" OR. CLUSTERING
ALGORI MIURE ALGORITH

Figure 2. A taxonomy of six neural nets used for classification
problems. Classical algorithms that are most similar to the
neural net model are shown at the bottom (From Lippman, 1987).
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2.1 Hopfield Net

The Hopfield net is one of three nets in Figure 2 that use

binary input. Such nets are appropriate for input values from

images where the pixel data are determined to be greater than or

less than some threshold value. The Hopfield net can be used as

a context-addressable memory or to solve optimization problems.

This net's nodes use the hard-limiter nonlinearity for binary

inputs of values +1 and -1. The output of each node is fed back

to all other nodes by a symmetrical weight matrix. By providing

a set of examples and specified output classes, the weight matrix

can be iteratively derived. When an unknown pattern is presented

to the Hopfield net, it iterates in discrete time steps until the

outputs no longer change on successive iterations. When used as

a memory model, the resultant output is the desired memory infor-

mation. When used as a classifier, the pattern specified by the

outputs is compared to the class outputs to see if an example

pattern is matched. If none is matched, a "no match" result

occurs.

Hopfield nets can be used to provide memory retrieval or

classification of very noisy input data. However, there are two

major limitations to these nets. First, the number of output

pattern classes that can be recalled is quite limited unless the

network size is quite large. If too many patterns are stored for

a given net size, the net may converge to a spurious pattern

different from all of the example patterns, and the network will

not be able to classify at all. This problem occurs when the
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number of output pattern classes is greater than 0.15 times the

number of nodes in the net. Thus, a Hopfield net to distinguish

10 classes would require at least 67 nodes. Since each node is

connected to all the others, the weight matrix would be 67x67, or

almost 4500 weights. Thus, the training time and storage re-

quirements could quickly become too large for big problems. The

second problem occurs when output classes are too similar. In

this case, the net may converge to the wrong class given similar

input patterns.

2.2 Hamming Net

The Hamming net (Fig. 2) is similar to the Hopfield net

except that nodes use the threshold logic nonlinearity (Fig. 1)

and the network consists of two layers. The first layer operates

much like a Hopfield net. Binary patterns are used as inputs,

but the outputs are matching scores defined by the so-called

Hamming distance between the input and the correct class for each

case. The Hamming distance is the number of bits in the input

which do not match the corresponding class example bits. The

outputs of the first layer, after convergence, are used as an

input layer to the second layer. This layer iterates until only

one output node is positive and the rest are negative. This node

corresponds to the correct class.

The Hamming net performs as well or better than the Hopfield

net while requiring fewer connections, typically only as many

nodes as the sum of the number of inputs plus the number of

classes. Thus, for bigger problems, the Hopfield net size grows
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exponentially while the Hamming net size grows linearly. Also,

the Hamming net does not have the spurious output problem that

the Hopfield net has. The Hamming net is a direct neural net

implementation of the "optimum classifier" algorithm used in

communications theory to reduce noise in binary signals.

2.3 Carpenter/Grosberg Net

The Carpenter/Grossberg net is an implementation of their

Adaptive Resonance Theory. This net forms clusters and is

trained without supervision. The net structure is similar to the

Hamming net except that a threshold value is used to measure how

close the outputs from successive cases are to each other. The

first case defines a locus for the first cluster. The next case

is processed through the net and is clustered with the first case

if the distance between them is less than the threshold. If not,

it becomes the locus for a new cluster. The process is repeated

for all of the test cases. Thus, the number of classes grows

with time, especially when the threshold distance is small. Each

new class requires a new node, and as many new weights as two

times the number of inputs, to compute matching scores.

The Carpenter/Grossberg net can work well with perfect input

patterns. However, even a small amount of noise can cause prob-

lems. With noise, or a threshold value that is too small, all

available nodes can quickly be used up and similar patterns will

still fail to be clustered. This type of net is very similar to

the "sequential leader clustering" statistical algorithm.
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2.4 Single-Laver Perceptron Net

The single-layer perceptron and two other nets in Figure 2

can use both continuous-valued and binary input data, which is

simply a subset of continuous-valued data. A single perceptron

node is depicted in Figure 3. This artificial neuron decides

whether an input set belongs to one of two classes denoted A or

B. The weighted sum of the input values minus some optional

threshold is passed through the hard-limiter nonlinearity, yield-

ing an cutput of +1 or -1. The decision rule is to choose class

A if the output is +1 and class B if -1. Lippman (1987) graphi-

cally depicts the behavior of such a perceptron by plotting a map

of the multidimensional space defined by the input variables.

The first two components of that space are depicted in Figure 4.

The weighted sum of the input values defines a pair of decision

regions that specify which input values result in a class A or a

class B response. Thus, the perceptron defines a hyperplane that

*0 Wo

OUTPUT
INPUT0

100

I 0 CLASS A
V I

-1 0 CLASS 8

Figure 3. A single-layer perceptron that classifies input vec-
tors into two classes denoted A and B.
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separates the two decision regions. In the two-dimensional

example (Fig. 4) the hyperplane is a line, and inputs above the

line lead to class A and those below to class B. Thus, it can be

seen that when the classes are not overlapping the perceptron

gives a perfect classification of the cases. When there is an

overlap, there must be some incorrect classifications. By chang-

ing the nonlinearity to the threshold-logic (Fig. 1), and itera-

tively correcting the weights on every trial by an amount propor-

tional to the difference between the desired and actual outputs,

the perceptron converges to the least-mean-square solution in

these situations. It will be shown in the next section that the

problem of overlapping decision regions is solved by adding more

layers of perceptrons. The difficulty in this approach is the

question of how to adjust the weights of previous levels in

response to errors occurring in higher levels. It was the solu-

tion of this problem that renewed interest in the neural network

A A

A A p
A 0 * B B

"N 0

ale - DECISION BOUNDARY

3t, W XO W

Figure 4. Graphical representation of the space formed by two
inputs and the hyperplane (line) formed by a neural net which
classifies the cases into two regions.
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methodology in recent years. The closest analogy to perceptron

nets is the maximum-likelihood Gaussian classifier.

2.5 Multi-layer Perceptron Net

Multi-layer perceptron nets have one or more layers of nodes

between the input and output layers. These so-called "hidden

layers" solve many of the limitations of single-layer percep-

trons, but were impossible to train effectively until recently.

The training problem was solved when Rumelhart et al. (1986)

devised the "back-propagation" algorithm I . In back-propagation,

the error between the actual and expected output is used to

adjust not only the weights contributing directly to the output,

but also the weights contributing to all of the contributing

units in previous layers.

The power of multi-level perceptron nets derives from the

nonlinearities used in the nodes. If the nodes were linear

processors then a single-layer network could do the same calcula-

tions as a multi-layer network. The comparative capabilities of

single-layer, two-layer and three-layer perceptron nets using

hard-limiter nonlinearities can be seen in Figure 5. As in the

previous section, the decision regions for various problems are

described geometrically. The second column (Fig. 5) lists the

types of geometric decision regions that can be defined by the

iThe author was fortunate last summer to have attended a one-day

tutcrial on neural networks taught by Dave Rumelhart and the

leader in speech-recognition neural networks, Terry Sejnowski.
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TYPES Of EXCLUSIVE OR CLASSES WrTH MOST GENERAL

STRUCTURE DECISION REGIONS PROSLEM MESHED It0EIONS REGION SHAPE
I

SINGLE-LAYEA

HALF PLANE A

GOUNOEO

HYPERPLANE V

TWO-LAYER

CONVEX A
OPEN

OR
CLOSED A

REGIONS a

THREE-LAYER

Numbew of N~d*$)~

Figure 5. Types of decision regions that can be formed by sin-
gle- and multi-layer perceptron nets with one and two layers of
hidden units and two inputs. Shading denotes decision region for
class A. Smooth, closed contours bound input distributions for
classes A and B (from Lippman, 1987).

net structure described in the first column. The third column

shows a graphical depiction of the exclusive-or problem and

decision regions (shaded vs. nonshaded) that might result for

each net. Notice that the single-layer perceptron can not solve

the exclusive-or problem because the regions cannot be separated

by a hyperplane. The network with one hidden layer, however, can

solve the exclusive-or problem because the extra decision layer

allows it to define a convex region in the space defined by the

inputs (Fig. 5). It turns out that the number of sides on the

convex region is determined by the number of nodes in the hidden

layer. By adding a second hidden layer, two distinct convex

regions can be defined (Fig. 5).
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The fourth column in Figure 5 depicts network decisi-n

regions for a two-class problem in which a portion of each solu-

tion region extends into the concave area formed by the other.

For these "meshed" decision regions, the single-layer net again

cannot solve the problem. Because the solution space requires a

concave decision region, even the net with one hidden layer

cannot solve the problem completely (Fig. 5). Only the use of a

second hidden layer can accomplish such a concave decision region

(Fig. 5). The last column in Figure 5 depicts the most general

soluticn region shape for each net configuration. Since a net

with two hidden layers can form an arbitrarily complex solution

region, there is never a need to structure a net with more than

two hidden layers. Added complexity at this point results from

using more nodes in the hidden layers rather than more layers.

The analysis in Figure 5 applies only to perceptron nets

using the hard-limiter and having a single output node. In

actual practice multiple output nodes and the sigmoidal nonlin-

earity are used. The behavior of these nets is even more com-

plex, resulting in curved decision region boundaries rather than

the straight-line segments depicted here.

Multi-layer perceptron nets can solve a wide range of deter-

ministic problems such as the exculsive-or problem, and have been

used in speech synthesis and recognition and visual pattern

recognition. The back-propagation method has some convergence

problers; notable a tendency to converge to locally-minimum

least-squares solutions rather than the global minimum. As will
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be shown in the next section, there are mathematical ways to

overcore this problem. Another problem is that convergence may

be slow, requiring many passes through the training set. This

problem is especially true when the solution regions are complex

in shape and disconnected. Continuing the analogy with conven-

tional statistical methods, the multi-layer perceptron yields

results similar to the K-Nearest Neighbor classifier (Lee et al.,

1990).

2.6 Kohonen Self-Organizing Feature Maps

This methodology is an unsupervised learning technique that

uses continuous-valued inputs. Contrary to the Carpenter/Gross-

berg net (Sec. 2.3), Kohonen's technique uses a predetermined

number of output classes. There is one output node for each

class, and the output nodes are extensively interconnected and

organized in a two-dimensional array. Input cases are presented

sequentially without specifying a desired output. A neighborhood

is defined around each output node resulting in weights that

cause output nodes to be topologically close to others sensitive

to similar inputs. The neighborhood size decreases in time,

causing a uniform classification of input patterns across the

range of output nodes.

The Kohonen net has been used in speech and pattern recogni-

tion problems. It is less sensitive to noise because the number

of classes is predetermined. A drawback is that the net tends to

be sensitive to the order that the training cases are processed,
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especially for small training sets. In many respects it is

similar to the conventional K-Means Clustering algorithm.

2.7 Network Choice for Satellite ImaQe Interpretation

If the satellite data being used were binary (e.g.,

cloud/no-cloud) and the classes (i.e., features to be recognized)

were well-defined shapes, the Hamming net might be a suitable

approach. However, the outputs consist of fronts, cloud lines,

vortices, etc., all of which can occur in many shapes and sizes.

Thus, the solution regions for this problem are likely complex in

shape and numerous. In addition, there might be some important

information in the radiance or gray-scale information which would

be masked by using binary data. Because of these considerations,

it seems clear that the multi-layer perceptron net has the best

chance at solving the satellite image interpretation problem.

Since we know what the desired output classes are, the Kohonen

classification methodology is probably not necessary.

Since the multi-layer perceptron methodology is indicated,

the following section presents a mathematical description of the

network function and training procedure.

3. Multi-level Perceptron Neural Networks

Multi-layer perceptron nets have one or more layers of

"hidden" units between the input and output layers. The activa-

tion 'a' of a given unit is a function of the weighted sum of the

input units to which it is connected. Thus, for any unit i the

activation due to a training pattern p is given by

ai = f(netpi )
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where

net wijapj + bias i

and f is the sigmoid function (Fig. 1). The bias term is analo-

gous to the perceptron offset 8, and can be thought of as a

scale factor. The least-mean-square (LMS) learning procedure of

Widrow and Hoff (1960) is used to adjust the weights. An error

function is defined that depends on the summed square of the

error for a set of training cases. The error of an output node

is simply the difference between the target output tpi and the

network output api. Thus, the error E is given by

= p (tpi - api)

The L24S error function defines an error space or surface for the

various potential weight values. The network is trained by

adjusting the weights such that the network error moves down the

error gradient toward a minimum value. This "gradient descent"

method makes the change in weight proportional to the negative of

the derivative of the error with respect to each weight. Thus,

the learning rule (also called the "delta rule") is

4Ep
Awij = -k

where k is the constant of proportionality. After taking the

derivative of E, the delta rule becomes

Awij =f piapj

where E=2k is the learning rate and

pi = (tpi - api)f'i(netpi)

for output units. Here, netpi is defined as above and f'i(netpi)
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is the derivative of the activation function with respect to a

change in the net input to the unit. Since we require this

function to exist, the discontinuous hard-limiter and threshold

logic nonlinearities (Fig. 1) cannot be used. The form of sig-

moid function used is the logistic function

1
a pi = -- - -( e

1 + e-netpi)

The derivative of this function can be shown to be

dapi
- --= a pi(l-api ) .

dnetpi

Thus, the error pi for an output node is given by

'pi = (tpi - api)api(l-api)"

For hidien units, there is no target value tpi. The back-propa-

gation technique propagates the error backward through the net-

work beginning with the output nodes. Since the error of an

output node is partially due to the inputs it receives from nodes

in previous layers, an output node error should result in the

adjustrent of earlier weights. It is assumed that the error

propagation should be proportional to the contributing weights;

i.e., those nodes contributing more to the error should be ad-

justed more. Thus, for hidden units we have

pi = 5kWkif'i(netpi )

where k is the index of the unit to which unit i contributes.

Backward propagation involves two steps. First, the input

pattern is fed into the net and propagated forward to compute

output values apj for each unit. This value is compared to the
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target values, resulting in a 6 term for each output unit. The

second phase is a backward pass through the network during which

the i term is computed for each node. After these two phases,

the delta term for each weight can be computed.

It is important to note that the activation derivative,

api(l-api), is zero when the activation is a maximum (1.0) or a

minimum (0.0), and reaches a maximum when api=0.5. Thus, weights

will change most for activations not yet committed to being on

(1.0) cr off (0.0) in the network.

Since back-propagation is a gradient-descent procedure, and

since the error surfaces are not bowl-shaped, there may be a

problem of settling into a local minimum. This problem may be

alleviated by the use of many hidden units.

The number of training passes required before the net

achieves equilibrium can be quite large if the learning rate is

too small. Although a large learning rate causes the weights to

change faster, it can lead to instabilities that cause the

weights to oscillate rather than converge. One way to increase

learning rates without causing oscillation is to include a momen-

tum term in the delta equation:

4,wij (n+1) = C(Fpiapj) + wij (n)

where n is the number of trials using a learning sample and O(is

the momentum constant. Thus, the derivative from the most recent

learning trial is used to stabilize the adjustment of weights on

the current trial.
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A program to derive multi-layer perceptron neural networks

has been programmed and tested. The routine, called "NOARL-

NEURAL," currently runs on a Z-248 or on the HP-835. A copy of

the program and a User's Guide are available from the athor.

4. Tests of NOARL-NEURAL

In this section, the pattern-recognition capability of

NOARL-NEURAL is demonstrated. First, a neural network to classi-

fy simple geometric patterns is derived. For a slightly more

complex problem, the network is next trained and tested with

alphabetic characters. Finally, a crude application to interpre-

tation of satellite imagery is presented. As will be seen, the

surprisingly good results of these tests indicate a strong poten-

tial for the use of neural nets to interpret satellite imagery.

4.1 Tests on Geometric Patterns

In this test, three geometric shapes are classified: cir-

cles, triangles and squares. The data for these cases were

generated by hand-sketching shapes on a 5x5 grid such as the one

in Figure 6a. For each grid square, the amount covered by a

shape's line was visually estimated. Thus, for the example in

Figure 6b, square 1 has zero coverage, square 2 has 0.3 (30%)

coverage, etc. The training set included six sketches for each

of the three shapes, for a total of 18 cases (Fig. 7). Notice

that the circles are not always centered on the grid, and the

squares and triangles are presented in different orientations.

The 25 grid-coverage values define an input set for a neural

network. This network consists of two layers; 25 inputs feeding
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Figure 6. a) Grid of 5x5 squares used as a digitizing background
for sketches of geometric shapes, and b) example of a circle
drawn on the grid and the estimated coverage in each square.

to a hidden layer of three units and an output layer also of

three units. Each output corresponds to one of the shapes.

Thus, a circle is assigned the output 0-0-1, a square has the

output 0-1-0, and a triangle is given 1-0-0. The network was

trained on the 18 learning cases. The net converged very quick-

ly, requiring only 100 passes of the 18 cases before the total

sum of the squared error reached very low levels. The 18 depend-

ent sample cases were then processed through the network. As can

be seen in Table 1, all 18 were classified correctly.

A test sample of 12 cases was next defined (Fig. 8). There

was no conscious effort to make these cases similar to the test

cases; in fact, the squares are particularly dissimilar to those

in the dependent sample (Fig. 8 vs. Fig. 7). The network classi-
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Table 1. Activations of a neural net with three output nodes,
and corresponding target activations, for 18 dependent sample
geometric shapes. Outputs corresponding to triangles, squares
and circles are 1-0-0, 0-1-0 and 0-0-i, respectively.

Output Node Activations Target Activations
Case 1 2 3 1 2 3
1 T1 0.99 0.03 0.00 1.00 0.00 0.00
2 S1 0.00 0.97 0.01 0.00 1.00 0.00
3 C1 0.00 0.02 0.99 0.00 0.00 1.00
4 T2 0.99 0.02 0.00 1.00 0.00 0.00
5 S2 0.01 0.98 0.00 0.00 1.00 0.00
6 C2 0.00 0.05 0.98 0.00 0.00 1.00
7 T3 0.99 0.03 0.00 1.00 0.00 0.00
8 S3 0.01 0.98 0.01 0.00 1.00 0.00
9 C3 0.00 0.03 0.99 0.00 0.0 n  1.00

10 T4 0.99 0.04 0.00 1.00 0.00 0.00
11 S4 0.01 0.98 0.00 0.00 1.00 0.00
12 C4 0.00 0.02 0.99 0.00 0.00 1.00
13 T5 0.99 0.02 0.00 1.00 0.00 0.00
14 S5 0.01 0.97 0.01 0.00 1.00 0.00
15 C5 0.00 0.01 0.98 0.00 0.00 1.00
16 T6 0.99 0.02 0.00 1.00 0.00 0.00
17 S6 0.01 0.94 0.01 0.00 1.00 0.00
18 C6 0.00 0.02 0.99 0.00 0.00 1.00

fication of the independent cases (Table 2) was very good -- only

one incorrect classification. Case ST2 was correct, but the

0.00-0.63-0.31 output values indicate that the net considered

this square to be somewhat similar to a circle. The case ST3

outputs were 0.01-0.16-0.15. Thus, the net didn't find a lot of

similarity with any of the test shapes, but still just managed to

favor the correct classification. The incorrect classification

of circle CT4 as a square was clearly wrong, as evidenced by the

0.02-0.96-0.00 output.

This test is admittedly crude in that inexact, hand-generat-

ed, visually-estimated input data are used. The small sample

sizes also preclude any generalization based on these results.

21



-U~

~L) E4 L 4
.- '4 . o

" -r . 4 " '

.1.4

T- 7--

~~CO

A F-

5 * -1 ;I.

ly E- -4 -

'C.(1 
4 -)-

OtW
TTQ

22~



.4 -

itL~

AA

4= U

.4E4

r -7 a,.-

0)

0U)

C- - i-L;

E- - lf~t
4

4J

CL.

(1)0

lip ---

23



Table 2. As in Table 1 except for 12 independent sample cases.

Output Node Activations Target Activations
Case 1 2 3 1 2 3
1 TTI 0.99 0.02 0.00 0.10 0.00 0.00
2 ST1 0.02 0.96 0.00 0.00 1.00 0.00
3 CTI 0.00 0.02 0.99 0.00 0.00 1.00
4 TT2 0.99 0.02 0.00 1.00 0.00 0.00
5 ST2 0.00 0.63 0.31 0.00 1.00 0.00
6 CT2 0.00 0.03 0.99 0.00 0.00 1.00
7 TT3 0.99 0.02 0.00 1.00 0.00 0.00
8 ST3 0.01 0.16 0.15 0.00 1.00 0.00
9 CT3 0.02 0.96 0.00 0.00 0.00 1.00

10 TT4 0.J9 0.03 0.00 1.00 0.00 0.00
11 ST4 0.01 0.97 0.00 0.00 1.00 0.00
12 CT4 0.00 0.14 0.92 0.00 0.00 1.00

However, one goal of this test was to verify the function of the

NOARL-NEURAL program. The good independent sample results indi-

cate that the program is indeed deriving a skillful neural net-

work. Despite the low number of hidden layer units, the net

still shows the ability to classify most of the cases correctly.

4.2 Tests on Alphabetic Characters

Although they are presented in different orientations, all

of the geometric shapes in each of the previous example classes

are basically the same. To present a more difficult task, the

net was given four alphabetic characters to recognize: 'A', 'a',

'B' and 'b'. What makes this test more difficult is that there

are only two output classes; that is, the net must determine

whether the input pattern indicates the first or the second

letter of the alphabet, regardless of upper or lower case. Thus,

the network must accomplish the same outputs for the very dissim-

ilar input patterns 'A' and 'a', and for 'B' and 'b'.
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As in the previous test, sketches of the letters were made

on the 5x5 grid (Fig. 9). There are 6 upper- and 6 lower-case

occurrences for each letter, for a total of 24 examples in the

training set. Notice that the letters are of different sizes and

shapes, and many occupy different locations in the grid. The

letters 'A' and 'a' were assigned the outputs 1-0, while 'B' and

'b' were assigned 0-1.

The network for this test consisted of 25 inputs, 4 hidden

units and 2 output units. Again, the net converged very quickly

and training was stopped at 100 iterations. When the 24 depend-

ent sarple cases were processed through the net, all were cor-

rectly classified (Table 3).

An independent sample of 12 cases (Fig. 10) was used to test

the network. All but one were correctly classified (Table 4).

In the incorrectly classified case (AT4), a lower-case 'a' was

classified as a 'b', probably due to a somewhat large lower loop

size compared to the lower loops of the training set examples.

Again, this test is for a small sample size and the net

configuration is small and only two-layered. Even so, the net

has the ability to discern almost all of the different letters

regardless of letter case. These encouraging results set the

stage for a test of neural nets on actual satellite imagery which

will be presented in the next section.

4.3 Tests on Satellite Imagery

In this test, the more ambitious goal of distinguishing

between major cloud patterns on a satellite image will be at-
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Table 3. Activations of a neural net with two output nodes, and
corresponding target activations, for 24 dependent sample alpha-
betic letters. Outputs corresponding to 'A' or 'a' are 1-0;
outputs corresponding to 'B' or 'b' are 0-1.

Output Node Target
Activations Activations

Case 1 2 1 2
1 Al 0.99 0.00 1.00 0.00
2 Bl 0.00 0.99 0.00 1.00
3 A2 0.99 0.00 1.00 0.00
4 B2 0.00 0.99 0.00 1.00
5 A3 0.99 0.01 1.00 0.00
6 B3 0.00 0.99 0.00 1.00
7 A4 0.99 0.01 1.00 0.00
8 B4 0.02 0.99 0.00 1.00
9 A5 0.99 0.00 1.00 0.00

10 B5 0.00 0.99 0.00 1.00
11 A6 0.99 0.00 1.00 0.00
12 B6 0.00 0.99 0.00 1.00
13 A7 0.99 0.00 1.00 0.00
14 B7 0.00 0.99 0.00 1.00
15 A8 0.99 0.01 1.00 0.00
16 B8 0.00 0.99 0.00 1.00
17 A9 0.99 0.00 1.00 0.00
18 B9 0.00 0.99 0.00 1.00
19 A10 0.99 0.00 1.00 0.00
20 B10 0.00 0.99 0.00 1.00
21 All 0.99 0.00 1.00 0.00
22 B11 0.00 0.99 0.00 1.00
23 A12 0.99 0.00 1.00 0.00
24 B12 0.00 0.99 0.00 1.00

tempted. The images used will be a sequence of GOES infrared

(IR) pictures presented in the Navy Tactical Applications Guide

(NTAG) Vol. 4 (Fett et al., 1984). In Section lB of that NTAG,

an eastern North Pacific blocking situation is depicted. In

choosing the types of cloud patterns to distinguish, it was

considered desirable to include patterns of approximately the

same size and that occur somewhat in isolation; i.e., the pattern

is distinct and is not contiguous with an adjacent pattern. Upon

examination, three major cloud patterns that meet these criteria
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Table 4. As in Table 3 except for 12 independent sample cases.

Output Node Target
Activations Activations

Case 1 2 1 2
1 AT1 0.99 0.00 1.00 0.00
2 AT2 0.98 0.02 1.00 0.00
3 BTI 0.00 0.99 0.00 1.00
4 BT2 0.00 0.99 0.00 1.00
5 AT3 0.99 0.00 1.00 0.00
6 AT4 0.00 0.99 1.00 0.00
7 BT3 0.00 0.99 0.00 1.00
8 BT4 0.00 0.99 0.00 1.00
9 AT5 0.99 0.00 1.00 0.00

10 AT6 0.99 0.00 1.00 0.00
11 BT5 0.48 0.55 0.00 1.00
12 BT6 0.00 0.99 0.00 1.00

were determined -- frontal bands, cirrus clouds and vortices.

The last category includes only those vortical clouds not associ-

ated with an accompanying frontal band; e.g., those associated

with troughs or cut-off lows. In choosing cases, the description

from the NTAG text was used to determine the correct feature

classification.

As in the previous tests, a 5x5 input grid was used. In

this case, however, a template conforming to the GOES image was

defined (Fig. 11) such that each grid square was 5°x5 O . The

template was converted to acetate such that it could be overlaid

on the GOES image (Fig. 12). The grid square that falls at the

center of each cloud feature defines the center of a 5x5 square

region. For each cloud pattern, the amount of upper (e.g.,

bright on IR) cloud cover in each square was visually estimated.

For this network a 26th input parameter, the northernmost lati-

tude of the grid centered on each feature, was added. A total of
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19 images was used, resulting in 18 examples of each cloud pat-

tern (Fig. 13). The images will not be reproduced here; a table

of the 54 cases (Table 5) can be used in conjunction with the

NTAG to determine which cloud patterns were used. In this study,

every third case of each type was separated to form an independ-

ent test sample.

Again, a two-layer network was used, this time consisting of

26 inputs feeding to three hidden and three output units. Cirrus

was assigned the output 1-0-0, fronts were assigned 0-1-0 and

vortices were given 0-0-1. When trained on the dependent sample

cases, the net was comparatively slow to converge. Several tests

of 500-1000 iterations were tried with only limited success. At

the tire of these tests, only the Z-248 version was available.

It was finally decided to initiate the program at the end of a

work day and let it iterate overnight. By morning, it had com-

pleted 30,000 iterations. When this network was tested on the

dependent sample, all but one of the 36 cases were correctly

classified (Table 6). The one error was in classifying a front

(case 29, F-14) as a vortex, although the front in case 9 (F-4)

was just barely classified correctly.

On the independent sample, only limited success was expected

due to the small dependent sample size, the coarse resolution of

the inrut grid, the inexact method of determining the cloud cover

amount, the use of only one radiance channel, and the goal of

distinguishing somewhat similar patterns that occur in a wide

variety of shapes. However, on these 18 test cases, the net was
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Table 5. 54 cirrus, front and vortex cloud patterns taken from
NTAG Vol. 4 (Fett, et al., 1984) for training and testing a
neural net. Labels used in NTAG are included for reference, as
well as latitude and longitude of grid center used in digitizing
the cloud amounts.

NTAG
Figure Cirrus Front Vortex

lB3a C" (12.5N,162.5W) F" (47.5N,127.5W) A" (27.5N,147.5W)
D" (17.5N,132.5W) H" (47.5N,172.5W)

lB7a jet(22.5N,127.5W) I" (42.5N,172.5W) A" (27.5N,147.5W)
jet(12.5N, 142.5W) F" (42.5N,97.5W)

iBlia jet(22.5N,132.5W) I" (42.5N,157.5W) A" (32.5N,142.5W)
jet(12.5N, 157.5W)

lBl5a PJS(22.5N,142.5W) J" (42.5N,172.5W) K" (42.5N,137.5W)
1B19a J-l(42.5N,157.5W) Q" (42.Ed4,172.5W)

P" (27.5N,127.5W)
lB23a jet(17.5N,117. SW) Q" (47.5N,152.5W)

P" (27.5N,117.5W)
lB27a jet(17.5N,152.5W) S" (27.5N,142.5W)

P" (27.5N,117.5W)
lB3Oa jet (22. 5N, 142.5W) S" (37.5N,147.5W)
iB3ia jet(22.5N, 132.5W) S" (37.5N,147.5W)

U" (42.5N,172.5W)
lB3lc jet(22.5N,l32.5W) U" (42.5N,167.5W)
1B32a jet (27. SN, 127.5W) U" (37.5N,157.5W)
1B33a jet(12.5N, 127.5W) U" (37.5N,152.5W)
1B35a jet(22.5N,122.5W)
1B38a jet(27. SN, 117.5W) V" (37.5N,172.5W)

U"3 (37. SN, 152. SW)
1B39a jet(27.5N,112.5W) V" (37.5N,167.5W) U"3(32.5N,142.5W)
1B39c V" (42.5N,167.5W) X" (32.5N,132.5W)
lB4Oa X" (32.5N,127.5W) V" (47.5N,172.5W)

V"1 (37. SN, 152.5W)
lB4la X" (32.5N,122.5W) V" (47.5N,172.5W)

V"1 (37. SN, 147.5W)
1843a Y"3(27.5N,l52.SW) V" (47.SN,172.5W)

able to correctly classify every case (Table 7). The likely

reason for this surprising success is that the cases are selected

from a time sequence of images, so that there is some similarity

between instances of a pattern on images separated by a few

hours. Nevertheless, these results are a very encouraging indi-
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Table f. Activations of a neural net with three output nodes,
and corresponding target activations, for 36 dependent sample
cloud patterns. Outputs corresponding to cirrus, fronts and
vortices are 1-0-0, 0-1-0 and 0-0-1, respectively.

Output Node Activations Target Activations
Case 1 2 3 1 2 3
1 C1 0.99 0.06 0.00 1.00 0.00 0.00
2 F1 0.00 0.99 0.00 0.00 1.00 0.00
3 V1 0.00 0.03 0.99 0.00 0.00 1.00
4 C2 0.99 0.06 0.00 1.00 0.00 0.00
5 F2 0.00 0.99 0.00 0.00 1.00 0.00
6 V2 0.00 0.03 0.99 0.00 0.00 1.00
7 C4 0.99 0.06 0.00 1.00 0.00 0.00
8 F4 0.03 0.05 0.00 0.00 1.00 0.00
9 %4 0.00 0.03 0.99 0.00 0.00 1.00

10 C5 0.99 0.06 0.00 1.00 0.00 0.00
11 F5 0.00 0.99 0.00 0.00 1.00 0.00
12 V5 0.00 0.03 0.99 0.00 0.00 1.00
13 C7 0.99 0.06 0.00 1.00 0.00 0.00
14 F7 0.00 0.99 0.00 0.00 1.00 0.00
15 V7 0.00 0.03 0.99 0.00 0.00 1.00
16 CS 0.99 0.06 0.00 1.00 0.00 0.00
17 FS 0.00 0.99 0.00 0.00 1.00 0.00
18 V8 0.00 0.03 0.99 0.00 0.00 1.00
19 CI0 0.99 0.06 0.00 1.00 0.00 0.00
20 F10 0.00 0.99 0.00 0.00 1.00 0.00
21 V10 0.00 0.03 0.99 0.00 0.00 1.00
22 CII 0.99 0.06 0.00 1.00 0.00 0.00
23 F1I 0.00 0.99 0.00 0.00 1.00 0.00
24 V11 0.00 0.03 0.99 0.00 0.00 1.00
25 C13 0.99 0.06 0.00 1.00 0.00 0.00
26 F13 0.00 0.99 0.00 0.00 1.00 0.00
27 V13 0.00 0.03 0.99 0.00 0.00 1.00
28 C14 0.99 0.06 0.00 1.00 0.00 0.00
29 F14 0.00 0.03 0.99 0.00 1.00 0.00
30 V14 0.00 0.03 0.99 0.00 0.00 1.00
31 C16 0.99 0.06 0.00 1.00 0.00 0.00
32 F16 0.00 0.99 0.31 0.00 1.00 0.00
-3 V16 0.00 0.03 0.99 0.00 0.00 1.00
34 C17 0.92 0.05 0.00 1.00 0.00 0.00
35 F17 0.00 0.99 0.00 0.00 1.00 0.00
36 V17 0.00 0.03 0.99 0.00 0.00 1.00

cation that the neural pattern recognition approach can be ap-

plied to the cloud pattern identification problem.
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Table 7. As in Table 6 except for 18 independent sample cases.

Output Node Activations Target Activations
Case 1 2 3 1 2 3
1 C3-I 0.99 0.07 0.00 1.00 0.00 0.00
2 F3-I 0.00 0.99 0.00 0.00 1.00 0.00
3 V3-I 0.00 0.03 0.99 0.00 0.00 1.00
4 C6-I 0.99 0.06 0.00 1.00 0.00 0.00
5 F6-I 0.00 0.99 0.00 0.00 1.00 0.00
6 V6-I 0.00 0.03 0.99 0.00 0.00 1.00
7 C9-I 0.99 0.06 0.00 1.00 0.00 0.00
8 F9-I 0.00 0.99 0.00 0.00 1.00 0.00
9 V9-I 0.00 0.03 0.99 0.00 0.00 1.00

10 C12-I 0.99 0.06 0.00 1.00 0.00 0.00
11 F12-I 0.00 0.99 0.00 0.00 1.00 0.00
12 V12-I 0.00 0.03 0.99 0.00 0.00 1.00
13 C15-I 0.99 0.06 0.00 1.00 0.00 0.00
14 F15-I 0.00 0.99 0.00 0.00 1.00 0.00
15 V15-I 0.00 0.03 0.99 0.00 0.00 1.00
16 C18-I 0.96 0.06 0.00 1.00 0.00 0.00
17 F18-I 0.00 0.99 0.00 0.00 1.00 0.00
18 V18-I 0.00 0.03 0.99 0.00 0.00 1.00

5. Proposed Cloud Image Feature Recognition System

These results are a very encouraging indication that neural

cloud pattern recognition is indeed possible. This study, howev-

er, was designed only to prove the concept, not to provide an

operational pattern recognition capacity. The types of patterns

distinguished here are quite restrictive compared to the range of

patterns seen on the day-to-day imagery. There are cloud fea-

tures of both large and small scales, and instances where fea-

tures may be contiguous or overlap. These problems must be

solved before neural cloud image interpretation is possible.

An additional problem that would be crucial to automated,

real-time image interpretation is the huge amount of pixel data

in each image. For each pixel value to be processed, even if
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only to be accessed as an input to a neural net, would likely

require an unacceptably large amount of computer resources if

done sequentially, or expensive hardware if done in parallel.

Based on the results of this study, a potential processing

architecture for automated cloud feature pattern recognition will

now be presented. The envisioned system is called the Cloud

Image Feature Recognition System, or CIFRS (pronounced

"cy-fers").

As shown in this study, large-scale patterns can be recog-

nized based on fairly coarse input data from the image. Thus, it

may not be necessary to process data from every pixel, but rather

from every Nth pixel. The acceptable value of N could probably

be determined statistically from information about how much of

such a scene is cloudy and the total number of pixels it con-

tains. Given such a spot-sampling of the image, cloudy vs. non-

cloudy regions could be determined. Because of the robustness of

the neural interpretation methods, this initial cloud/no-cloud

determination could be from a simple radiance threshold method.

Alternately, a neural net using inputs from many channels might

prove superior for this task. Adjacent cloudy pixels would then

be considered to define a continuously-cloudy region. Again, the

validity of this assumption depends on the number of pixels

omitted from the sample. Even if multiple features are errone-

ously combined at this step, a later process will separate them.

Once the cloudy regions have been determined, a large-scale

pattern-recognition neural net could be used to provide an ini-
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tial classification. Such a net would likely be quite similar to

the one presented in the previous section. The net would have to

be trained on a data set that includes any large-scale cloud

features, including those apparently large-scale features that

are in reality contiguous smaller-scale features. Consider,

however, that the image area that must be analyzed has been

reduced by the omission of predominantly noncloudy regions. In

addition, it seems likely that the analysis of a large, cloudy

region would still not require the processing of every pixel in

the region. Thus, the CIFRS approach would establish a signifi-

cant reduction in the amount of data to be processed.

Given a large-scale identification of cloudy regions, a

logic-based system would be used to expand the analysis to in-

clude smaller-scale features. An example of such a system is the

SIAMES expert system (Peak, 1989). SIAMES uses information about

the known feature classifications to initiate a search for asso-

ciated smaller-scale features that might be present. For exam-

ple, once SIAMES knows there is a front, it looks for open cells

behind the front. This top-down approach accomplishes a further

reduction of the data because specific locations are chosen for

the search. In CIFRS, a neural net would be trained for analysis

of each such subregion. For example, a post-frontal neural net

would look for open or closed cells, small-scale vortices, etc.

An additional task at this stage would be the analysis of details

of the large-scale features. Examples might be the sharpness of
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a frontal band edge or the presence of transverse bands in

cirrus.

The envisioned architecture is presented in Figure 14. The

pixel data is first reduced by some statistical method in the

Data Reducer. This reduced data set forms the input to the Cloud

Determiner. This module might attempt a cloud/no-cloud categori-

zation, or possibly a cloud classification such as does the

neural network methodology of Lee et al. (1990). The output of

this analysis step becomes the input to the Large Feature Identi-

fier. This module would be very similar to that presented in

this study. However, the system should be designed to have its

results checked by the next module, the Analysis Supervisor.

Since neural nets never have to stop learning, if subsequent

analysis proves that a large-feature classification was wrong,

that network could learn from its mistake.

The Analysis Supervisor would be responsible for overseeing

the more detailed analysis. Like SIAMES, it would use contextual

information and preliminary conclusions to generate hypotheses

about the remaining image features and also generate more de-

tailed analysis of the identified features. It is unclear wheth-

er the Supervisor would be a knowledge-based system or a neural

net. To accomplish the verification of these hypotheses, a suite

of Small Feature Identifiers would be available. The Supervisor

would determine which to use and at what locations. Based on the

growing knowledge provided by the continuing analysis, the Super-

visor might generate further uses for the Small Feature Identifi-
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DATA REDUCER
pixel data

(statistical)

CLOUD DETERMINER

cloud/no-cloud or
cloud classifier

(neural or conventional)

LARGE-FEATURE IDENTIFIER

(neural)WiT
ANALYSIS SUPERVISOR

(knowledge-based or neural)

SUITE OF SMALL-FEATURE UNPROCESSED-REGION
IDENTIFIERS SCANNER

(neural) (neural)

Figure 14. Proposed CIFRS architecture.
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ers, or might alter its earlier conclusions. In particular,

large-scale features that are actually connected smaller features

would be identified as such.

Eventually, the goal is to provide a meteorological inter-

pretation of the image features. At this early stage, it is

somewhat difficult to determine how much of the CIFRS processing

will proceed top-down or bottom-up. It seems likely that data

will be processed in both directions repetitively; as more fea-

tures are identified, the increased information will generate a

search for more detail about what is known and for new features

not yet recognized. The CIFRS process appears to be similar to

the way humans interpret an image. W_ zertainly do not begin by

analyzing every tiny detail -- rather, a few large features catch

our attention first. Based on what these features might be, we

generate in out minds hypotheses about the overall image and

begin to search for evidence to verify or disprove those hypothe-

ses. Thus, we only examine in detail the portions of the image

that give us the information that we need. Granted, sometimes

scanning an area that we have no particular interest in will

uncover an interesting feature. After the CIFRS knowledge-based

interpretation is complete, the system could then include such

scanning of areas not yet processed using neural networks (Fig.

14). The time and detail devoted to this search would depend on

the computer resources available, but since much of the image

will already be interpreted the scanning should not have to cover

a large area.
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The CIFRS system would involve many neural nets tailored

toward different tasks. The research involved in constructing

such a complete system is extensive. However, the results of the

initial tests presented here provide a good starting point in

developing CIFRS. The first task should probably be to develop a

more sophisticated neural identifier of large features. If

possible, actual satellite image data should be used. Thus, the

problem of determining how much pixel data to ignore should also

be addressed. Once the large-scale features are being recog-

nized, the system can be expanded to include more and more de-

tailed analysis.

6. Conclusions and Recommendations

Neural networks are a powerful type of computer model in

which many nonlinear processing elements are arranged in parallel

networks. These networks, based on current understanding of

biological nervous systems, have proven useful in pattern recog-

nition problems.

In this paper, six neural networks that perform classifica-

tion have been investigated. The multi-level perceptron network

has been chosen to be most applicable to the classification of

satellite cloud images. The mathematical basis for this neural

network model has been presented and a version of the model,

called "NOARL-NEURAL," has been programmed.

In simple tests on geometric and alphabetic shapes, the

multi-layer perceptron neural nets were shown to have high levels

of pattern classification skill. A more complex test using GOES
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infrared imagery showed that a neural network can be used to

distinguish between fronts, cirrus and cloud vortices. Of the 54

cloud patterns in this test, only one dependent sample pattern

was incorrectly classified.

The surprisingly good results of this limited experiment

have led to a proposed architecture for automated cloud feature

recognition. The system, called CIFRS (Cloud Image Feature

Recognition System), would involve several neural networks tai-

lored to the interpretation of different types of cloud features.

These network types would be based on feature size and location

relative to other known features. The complete system would

likely include statistical and knowledge-based components to

accomplish data reduction and to direct the search process. The

proposed architecture includes both top-down and bottom-up proc-

essing such that the problem is reduced to a manageable size.

The continuous feedback between the CIFRS modules should make the

system less sensitive to classification errors made during any

one step in the process.

The next step in the process should be to refine the large-

scale feature identification experiment presented in this study.

It should be attempted to derive a network that classifies a

wider range of large-scale features. Possible inputs modifica-

tions would include different resolutions, multiple-channel

information and cloud classifications. Since CIFRS requires a

skillful large-feature classification, the development of this

module is a natural first step.
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